استفاده از شبکههای عصبی ترکیبی و روش بهینهسازی آموزش جامع ازدحام ذرات بهمنظور پیشبینی کوتاهمدت بار الکتریکی
نویسندگان
چکیده مقاله:
پیشبینی کوتاهمدت بار الکتریکی همواره بهعنوان یکی از عناصر کلیدی در عملکرد اقتصادی و ایمن سیستمهای قدرت بهحساب میآید. در محیط رقابتی بازار برق، شرکتهای برق به رویکردهای دقیقتری برای پیشبینی بار بهمنظور گرفتن تصمیمات بهتر درزمینه خرید و یا تولید برق نیازمند هستند. در این مقاله روشی نوین برای پیشبینی کوتاهمدت بار الکتریکی بر مبنای یادگیری ماشینی ارائهشده است. این روش از یک فرایند انتخاب دادهی مؤثر دومرحلهای و یک موتور پیشبینی نوین تشکیل شده است. در بخش انتخاب داده مؤثر از دو فیلتر مجزای نامربوط بودن و زائد بودن برای انتخاب بهترین مجموعه دادههای ورودی استفاده شده است. در موتور پیشبینی پیشنهادی از یک ماشین بردار پشتیبان، شبکه عصبی ترکیبی و روش بهینهسازی آموزش جامع ازدحام ذرات، استفادهشده است. با بکارگیری روش بهینهسازی آموزش جامع ازدحام ذرات در کنار شبکه عصبی ترکیبی، دقت پیشبینی افزایش یافته و از خطای آن به میزان موثری کاسته میشود. رویکرد پیشنهادی در بازارهای برق PJM و AEMO مورد بررسی قرار گرفته است. نتایج عددی بهدستآمده، نشاندهندهی کارایی و توانایی قابلقبول این روش در مقایسه با آخرین روشهای ارائهشده درزمینه پیشبینی کوتاهمدت بار الکتریکی است.
منابع مشابه
دسته بندی اهداف سوناری با استفاده از روش ترکیبی ازدحام ذرات و جستجوی گرانشی
با توجه به خصوصیات فیزیکی بسیار نزدیک اهداف واقعی و کلاترِ سونار فعال، تفکیک این اهداف، از موضوعات چالشبرانگیز محققان و صنعتگران حوزه آکوستیک میباشد. شبکههای عصبی چندلایه (MLP) یکی از پرکاربردترین شبکههای عصبی در دستهبندی اهداف دنیای واقعی هستند. آموزش از مهمترین بخشهای توسعه این نوع شبکه ها است که در سالهای اخیر بسیار مورد توجه قرار گرفته است. به منظور آموزش شبکههای MLP از دیر باز استف...
متن کاملدسته بندی اهداف سوناری با استفاده از روش ترکیبی ازدحام ذرات و جستجوی گرانشی
با توجه به خصوصیات فیزیکی بسیار نزدیک اهداف واقعی و کلاترِ سونار فعال، تفکیک این اهداف، از موضوعات چالش برانگیز محققان و صنعت گران حوزه آکوستیک می باشد. شبکه های عصبی چندلایه (mlp) یکی از پرکاربردترین شبکه های عصبی در دسته بندی اهداف دنیای واقعی هستند. آموزش از مهمترین بخش های توسعه این نوع شبکه ها است که در سال های اخیر بسیار مورد توجه قرار گرفته است. به منظور آموزش شبکه های mlp از دیر باز استف...
متن کاملتبیین الگوی اندازه گیری مدیریت سود با استفاده از روش ترکیبی هوشمند شبکه های عصبی و الگوریتم های فراابتکاری(ژنتیک و ازدحام ذرات)
شناخت مدیریت سود برای استفاده کنندگان از اطلاعات حسابداری به دلیل ارزیابی عملکرد، پیشبینی سودآوری و تعیین ارزش واقعی شرکت بسیار حائز اهمیت است. هدف از این تحقیق برآورد الگوی برای پیشبینی مدیریت سود با استفاده الگوی شبکههای عصبی و سپس استفاده از الگوریتمهای فراابتکاری ژنتیک و ازدحام ذرات برای یافتن ترکیبی بهتر از دادههای ورودی است به گونهای که بتواند الگو اولیه را بهینه نماید. برای این منظ...
متن کاملاستفاده از روش ماسکینگام خطی و الگوریتم بهینهسازی ازدحام ذرات (PSO) در محاسبه عمق سیلاب رودخانهها
محاسبه عمق آب هنگام وقوع سیل جهت برآورد خسارات ناشی از آن، امری ضروری است. استفاده از روشهای هیدرولیکی (حل معادلات سنت – ونانت) جهت روندیابی سیل و محاسبه عمق آب، بهدلیل نیاز داشتن مشخصات مقاطع رودخانه در فواصل مناسب، امری زمانبر، مشکل و پر هزینه است. استفاده از روشهای هیدرولوژیکی مانند روش ماسکینگام خطی جهت روندیابی سیل، علاوه بر سادگی و کم هزینهبودن، از دقت مناسبی نیز برخوردار است. تاکنو...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 10 شماره 1
صفحات 31- 40
تاریخ انتشار 2019-05-22
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023